Stochastic Analysis of Convergence via Dynamic Representation for a Class of Line-search Algorithms

نویسندگان

  • Luc Pronzato
  • Henry P. Wynn
  • Anatoly A. Zhigljavsky
چکیده

Certain convergent search algorithms can be turned into chaotic dynamic systems by renormalisation back to a standard region at each iteration. This allows the machinery of ergodic theory to be used for a new probabilistic analysis of their behaviour. Rates of convergence can be redefined in terms of various entropies and ergodic characteristics (Kolmogorov and Re!nyi entropies and Lyapunov exponent). A special class of line-search algorithms, which contains the Golden-Section algorithm, is studied in detail. Their associated dynamic systems exhibit a Markov partition property, from which invariant measures and ergodic characteristics can be computed. A case is made that the Re!nyi entropy is the most appropriate convergence criterion in this environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving a Stochastic Cellular Manufacturing Model by Using Genetic Algorithms

This paper presents a mathematical model for designing cellular manufacturing systems (CMSs) solved by genetic algorithms. This model assumes a dynamic production, a stochastic demand, routing flexibility, and machine flexibility. CMS is an application of group technology (GT) for clustering parts and machines by means of their operational and / or apparent form similarity in different aspects ...

متن کامل

On the Convergence Analysis of Gravitational Search Algorithm

Gravitational search algorithm (GSA) is one of the newest swarm based optimization algorithms, which has been inspired by the Newtonian laws of gravity and motion. GSA has empirically shown to be an efficient and robust stochastic search algorithm. Since introducing GSA a convergence analysis of this algorithm has not yet been developed. This paper introduces the first attempt to a formal conve...

متن کامل

On the Convergence Analysis of Gravitational Search Algorithm

Gravitational search algorithm (GSA) is one of the newest swarm based optimization algorithms, which has been inspired by the Newtonian laws of gravity and motion. GSA has empirically shown to be an efficient and robust stochastic search algorithm. Since introducing GSA a convergence analysis of this algorithm has not yet been developed. This paper introduces the first attempt to a formal conve...

متن کامل

Hybrid Probabilistic Search Methods for Simulation Optimization

Discrete-event simulation based optimization is the process of finding the optimum design of a stochastic system when the performance measure(s) could only be estimated via simulation. Randomness in simulation outputs often challenges the correct selection of the optimum. We propose an algorithm that merges Ranking and Selection procedures with a large class of random search methods for continu...

متن کامل

A contribution to approximate analytical evaluation of Fourier series via an Applied Analysis standpoint; an application in turbulence spectrum of eddies

In the present paper, we shall attempt to make a contribution to approximate analytical evaluation of the harmonic decomposition of an arbitrary continuous function. The basic assumption is that the class of functions that we investigate here, except the verification of Dirichlet's principles, is concurrently able to be expanded in Taylor's representation, over a particular interval of their do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorics, Probability & Computing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 1997